login
A126808
Let p be a prime with decimal expansion abcd...fg. Then p is in the sequence if ab+bc+cd+...+fg is a prime.
0
13, 17, 31, 71, 211, 419, 617, 1013, 1021, 1031, 1051, 1151, 1181, 1193, 1201, 1213, 1217, 1231, 1237, 1279, 1291, 1297, 1301, 1303, 1307, 1321, 1327, 1439, 1451, 1493, 1511, 1531, 1543, 1549, 1571, 1579, 1597, 1657, 1709, 1721, 1733, 1811, 1871, 1877
OFFSET
1,1
FORMULA
Take 1297. 1*2 + 2*9 + 9*7 = 2 + 18 + 63 = 83, a prime.
MATHEMATICA
Select[Prime@Range[300], PrimeQ[Plus @@ Times @@@ Partition[IntegerDigits[ # ], 2, 1]] &] (* Ray Chandler, Mar 16 2007 *)
CROSSREFS
Sequence in context: A158087 A210546 A370848 * A053009 A069485 A263725
KEYWORD
nonn,base,easy
AUTHOR
J. M. Bergot, Mar 14 2007
EXTENSIONS
Corrected and extended by Ray Chandler, Mar 16 2007
STATUS
approved