This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126791 Binomial matrix applied to A111418. 24
 1, 4, 1, 17, 7, 1, 75, 39, 10, 1, 339, 202, 70, 13, 1, 1558, 1015, 425, 110, 16, 1, 7247, 5028, 2400, 771, 159, 19, 1, 34016, 24731, 12999, 4872, 1267, 217, 22, 1, 160795, 121208, 68600, 28882, 8890, 1940, 284, 25, 1, 764388, 593019, 355890, 164136 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Triangle T(n,k), 0<=k<=n, read by rows defined by : T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=4*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+3*T(n-1,k)+T(n-1,k+1) for k>=1. This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; ((1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906 . - Philippe Deléham, Sep 25 2007 The matrix inverse starts 1; -4,1; 11,-7,1; -29,31,-10,1; 76,-115,60,-13,1; -199,390,-285,98,-16,1; 521,-1254,1185,-566,145,-19,1; -1364,3893,-4524,2785,-985,201,-22,1; ... - R. J. Mathar, Mar 12 2013 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened FORMULA Sum{k, k>=0}T(m,k)*T(n,k) = T(m+n,0) = A026378(m+n+1). Sum{k, 0<=k<=n}T(n,k) = 5^n = A000351(n). T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1,-n+1,3/2)). - Peter Luschny, May 13 2016 EXAMPLE Triangle begins: 1; 4, 1; 17, 7, 1; 75, 39, 10, 1; 339, 202, 70, 13, 1; 1558, 1015, 425, 110, 16, 1; 7247, 5028, 2400, 771, 159, 19, 1; 34016, 24731, 12999, 4872, 1267, 217, 22, 1;... Production matrix begins 4, 1 1, 3, 1 0, 1, 3, 1 0, 0, 1, 3, 1 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 0, 0, 1, 3, 1 0, 0, 0, 0, 0, 0, 0, 1, 3, 1 - From Philippe Deléham, Nov 07 2011 MAPLE A126791 := proc(n, k)     if n=0 and k = 0 then         1 ;     elif k <0 or k>n then         0;     elif k= 0 then         4*procname(n-1, 0)+procname(n-1, 1) ;     else         procname(n-1, k-1)+3*procname(n-1, k)+procname(n-1, k+1) ;     end if; end proc: # R. J. Mathar, Mar 12 2013 T := (n, k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k, -n+1, 3/2) - GegenbauerC(n-k-1, -n+1, 3/2)): seq(seq(T(n, k), k=1..n), n=1..10); # Peter Luschny, May 13 2016 MATHEMATICA T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 4, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *) CROSSREFS Sequence in context: A209411 A093035 A301624 * A052179 A171589 A126331 Adjacent sequences:  A126788 A126789 A126790 * A126792 A126793 A126794 KEYWORD nonn,tabl AUTHOR Philippe Deléham, Mar 14 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 16:41 EST 2018. Contains 318023 sequences. (Running on oeis4.)