login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = phi(n)^2 * d(n) = A000010(n)^2 * A000005(n).
2

%I #18 May 31 2024 06:45:16

%S 1,2,8,12,32,16,72,64,108,64,200,96,288,144,256,320,512,216,648,384,

%T 576,400,968,512,1200,576,1296,864,1568,512,1800,1536,1600,1024,2304,

%U 1296,2592,1296,2304,2048,3200,1152,3528,2400,3456,1936,4232,2560,5292,2400

%N a(n) = phi(n)^2 * d(n) = A000010(n)^2 * A000005(n).

%H Vaclav Kotesovec, <a href="/A126775/a126775.jpg">Graph - the asymptotic ratio (100000 terms)</a>

%F Multiplicative with a(p^e) = (e+1)*(p-1)^2*p^(2*e-2). - _Amiram Eldar_, Dec 29 2022

%F From _Vaclav Kotesovec_, May 31 2024: (Start)

%F Dirichlet g.f.: zeta(s-2)^2 * Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).

%F Let f(s) = Product_{p prime} (1 - 1/p^(2*s-2) + 2/p^(2*s-3) - 4/p^(s-1) + 2/p^s).

%F Sum_{k=1..n} a(k) ~ f(3) * n^3 * (log(n) + 2*gamma - 1/3 + f'(3)/f(3)) / 3, where

%F f(3) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = A256392 = 0.2177787166195363783230075141194468131307977550013559376482764035236264...,

%F f'(3) = f(3) * Sum_{p prime} 2*(2*p - 1) * log(p) / (p^3 + p^2 - 3*p + 1) = f(3) * 1.6860441157206199528397247528679297282000614932962665074593283751342385...

%F and gamma is the Euler-Mascheroni constant A001620. (End)

%t Table[EulerPhi[n]^2 DivisorSigma[0,n],{n,50}] (* _Harvey P. Dale_, Dec 05 2012 *)

%o (Magma) [ EulerPhi(n)*EulerPhi(n)*NumberOfDivisors(n) : n in [1..100] ];

%Y Cf. A000005, A000010, A064840, A127473, A256392.

%K easy,nonn,mult

%O 1,2

%A _Jonathan Vos Post_, May 27 2007