OFFSET
1,1
COMMENTS
Trieneprime (3-prime-factor) analog of A126610 (semiprimes) and A126608-126609 (primes). This is the second row of the infinite array: A(k,n) = Smallest odd prime q such that pq+k has exactly 3 prime factors (with multiplicity), where p is the n-th odd prime. The odd trieneprimes arising begin: 125, 27, 261, 255, 171, 325. The above A(k,n) is the 3rd plane of the infinite 3-D array: A(j,k,n) = Smallest odd prime q such that pq+k has exactly j prime factors, where p is the n-th odd prime.
EXAMPLE
a(1) = 41 because oddprime(1)*1+2 = 3*41+2 = 125 = 5*5*5.
a(2) = 5 because oddprime(2)*5+2 = 5*5+2 = 27 = 3*3*3.
a(3) = 37 because oddprime(3)*37+2 = 7*37+2 = 261 = 3*3*29.
a(4) = 23 because oddprime(4)*3+2 = 11*23+2 = 255 = 3*5*17.
a(5) = 13 because oddprime(5)*13+2 = 13*13+2 = 171 = 3*3*19.
a(6) = 19 because oddprime(6)*19+2 = 17*19+2 = 325 = 5*5*13.
MAPLE
A001222 := proc(n) local ifcts, i ; ifcts := ifactors(n)[2] ; add(op(2, op(i, ifcts)), i=1..nops(ifcts)) ; end: isA014612 := proc(n) if A001222(n) = 3 then true ; else false ; fi ; end: A126636 := proc(n) local p, q; p := ithprime(n+1) ; q := 3 ; while not isA014612(p*q+2) do q := nextprime(q) ; od ; RETURN(q) ; end : for n from 1 to 100 do printf("%d, ", A126636(n)) ; od ; # R. J. Mathar, Feb 13 2007
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Feb 08 2007
EXTENSIONS
More terms from R. J. Mathar, Feb 13 2007
STATUS
approved