login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126618 Simili-primes of order 3. 7
4, 7, 11, 17, 23, 27, 31, 39, 45, 53, 59, 67, 74, 82, 87, 95, 103, 111, 122, 127, 131, 141, 146, 151, 163, 169, 178, 183, 193, 199, 211, 215, 223, 229, 237, 247, 251, 263, 271, 278, 290, 298, 307, 314, 325, 334, 342, 349, 358, 362, 369, 377, 383 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Definition of simili-primes of order k: Start with the natural numbers 2,3,4,5,... Define an atom to be the k-th integer which cannot be divided by another atom. The first atom is k+1. Repeat. Order 1 gives the primes A000040, order 2 gives A123929. Orders 4,5,... give A126619, A126620, A126621, ...

Invented by Hugo van der Sanden and Eric Angelini, computed by Mensanator.

REFERENCES

J.-P. Delahaye, La suite du l├ęzard et autres inventions, Pour la Science, No. 353, 2007.

LINKS

Mensanator, Table of n, a(n) for n = 1..150

Eric Angelini, Thousand Zetas

Eric Angelini, Thousand Zetas [Cached copy, with permission]

PROG

(PARI) A126618(n, mode=0/*+1=print, +2=return list*/, N=3, P=List(N+1))={ while(n--, my(k=P[#P]); bittest(mode, 0)&&print1(k", "); for(i=1, N, while(k++, for(j=1, #P, k%P[j]||next(2)); break)); listput(P, k)); if(bittest(mode, 1), Vec(P), P[#P])} \\ - M. F. Hasler, Dec 24 2013

CROSSREFS

See A123929 for further details.

Sequence in context: A038835 A310766 A097403 * A171452 A049648 A211647

Adjacent sequences:  A126615 A126616 A126617 * A126619 A126620 A126621

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Feb 09 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 22 10:16 EST 2019. Contains 320390 sequences. (Running on oeis4.)