

A126562


Number of intersections of at least four edges in a cube of n X n X n smaller cubes.


0



0, 7, 32, 81, 160, 275, 432, 637, 896, 1215, 1600, 2057, 2592, 3211, 3920, 4725, 5632, 6647, 7776, 9025, 10400, 11907, 13552, 15341, 17280, 19375, 21632, 24057, 26656, 29435, 32400, 35557, 38912, 42471, 46240, 50225, 54432, 58867, 63536, 68445
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n1) = n^3 (12n16): a(n1) is the number of points in a cubic lattice of n^3 equally spaced points from which all the 12n16 points on the 12 edges are removed.  Luciano Ancora, Jun 25 2015


LINKS

Table of n, a(n) for n=1..40.
Index entries for linear recurrences with constant coefficients, signature (4,6,4,1).


FORMULA

a(n) = 6 * (n1)^2 + (n1)^3.
G.f.: x^2*(7+4*x5*x^2)/(1x)^4.  Colin Barker, Jul 29 2012


EXAMPLE

On a cube made of 3 X 3 X 3 smaller cubes, each of the 6 sides has 4 intersections of four edges and in the center, there are 8 intersections of six edges. 6 * 4 + 8 = 32, which is a(3).


MATHEMATICA

LinearRecurrence[{4, 6, 4, 1}, {0, 7, 32, 81}, 50] (* Vincenzo Librandi, Jun 27 2015 *)


PROG

(PARI) concat(0, Vec(x^2*(7+4*x5*x^2)/(1x)^4 + O(x^50))) \\ Michel Marcus, Jun 26 2015
(MAGMA) [6*(n1)^2 + (n1)^3: n in [1..40]]; // Vincenzo Librandi, Jun 27 2015


CROSSREFS

Sequence in context: A013650 A013656 A067982 * A190096 A254407 A219510
Adjacent sequences: A126559 A126560 A126561 * A126563 A126564 A126565


KEYWORD

nonn,easy


AUTHOR

Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 12 2007


STATUS

approved



