login
A126450
Triangle, read by rows, where T(n,k) = C( C(n+2,3) - C(k+2,3) + 1, n-k) for n>=k>=0.
9
1, 2, 1, 10, 4, 1, 165, 45, 7, 1, 5985, 1140, 136, 11, 1, 376992, 52360, 4960, 325, 16, 1, 36288252, 3819816, 292825, 16215, 666, 22, 1, 4935847320, 406481544, 25621596, 1215450, 43680, 1225, 29, 1, 899749479915, 59487568920, 3127595016, 128164707
OFFSET
0,2
COMMENTS
FORMULA
T(n,k) = C( n*(n+1)*(n+2)/3! - k*(k+1)*(k+2)/3! + 1, n-k) for n>=k>=0.
EXAMPLE
Formula: T(n,k) = C( C(n+2,3) - C(k+2,3) + 1, n-k) is illustrated by:
T(n=4,k=1) = C( C(6,3) - C(3,3) + 1, n-k) = C(20,3) = 1140;
T(n=4,k=2) = C( C(6,3) - C(4,3) + 1, n-k) = C(17,2) = 136;
T(n=5,k=2) = C( C(7,3) - C(4,3) + 1, n-k) = C(32,3) = 4960.
Triangle begins:
1;
2, 1;
10, 4, 1;
165, 45, 7, 1;
5985, 1140, 136, 11, 1;
376992, 52360, 4960, 325, 16, 1;
36288252, 3819816, 292825, 16215, 666, 22, 1;
4935847320, 406481544, 25621596, 1215450, 43680, 1225, 29, 1; ...
PROG
(PARI) T(n, k)=binomial(n*(n+1)*(n+2)/3!-k*(k+1)*(k+2)/3!+1, n-k)
CROSSREFS
Columns: A126451, A126452; A126453 (row sums); variants: A126445, A126454, A126457, A107867.
Sequence in context: A105615 A136216 A121334 * A235608 A112333 A066868
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 27 2006
STATUS
approved