login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126354 a(n) = 6*a(n-2) - a(n-4) for n > 4, with a(1)=1, a(2)=0, a(3)=3, a(4)=2. 2
1, 0, 3, 2, 17, 12, 99, 70, 577, 408, 3363, 2378, 19601, 13860, 114243, 80782, 665857, 470832, 3880899, 2744210, 22619537, 15994428, 131836323, 93222358, 768398401, 543339720, 4478554083, 3166815962, 26102926097, 18457556052, 152139002499 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Each pair of terms {odd=x, even=y} gives a solution to the Pell equation x^2 - 2y^2 = 1. Note that odd/even terms also have odd/even indices. The ratio a(2k-1)/a(2k) tends to sqrt(2). Interrelations between odd and even terms: a(2k+1) = 3a(2k-1) + 4a(2k); e.g., 99 = 3*17 + 4*12, 577 = 3*99 + 4*70; a(2k) = 3a(2k-2) + 2a(2k-3), e.g., 70 = 3*12 + 2*17, 408 = 3*70 + 2*99. Odd terms = A001541, even terms = 2*A001109.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).

FORMULA

O.g.f.: x*(2*x+1)*(-1+x)^2/((x^2-2*x-1)*(x^2+2*x-1). - R. J. Mathar, Dec 10 2007

MATHEMATICA

LinearRecurrence[{0, 6, 0, -1}, {1, 0, 3, 2}, 35] (* G. C. Greubel, Mar 16 2019 *)

PROG

(PARI) my(x='x+O('x^35)); Vec(x*(1+2*x)*(1-x)^2/((1-2*x-x^2)*(1+2*x-x^2))) \\ G. C. Greubel, Mar 16 2019

(MAGMA) I:=[1, 0, 3, 2]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..35]]; // G. C. Greubel, Mar 16 2019

(Sage) a=(x*(1+2*x)*(1-x)^2/((1-2*x-x^2)*(1+2*x-x^2))).series(x, 35).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 16 2019

(GAP) a:=[1, 0, 3, 2];; for n in [5..35] do a[n]:=6*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Mar 16 2019

CROSSREFS

Cf. A001109, A001541.

Sequence in context: A209600 A072045 A189731 * A158939 A173795 A249769

Adjacent sequences:  A126351 A126352 A126353 * A126355 A126356 A126357

KEYWORD

nonn

AUTHOR

Zak Seidov, Dec 26 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 04:21 EST 2019. Contains 329051 sequences. (Running on oeis4.)