login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126347 Triangle, read by rows, where row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n). 4
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 4, 2, 1, 1, 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1, 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1, 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1, 1, 7, 21, 56, 105, 161, 231, 302, 356, 379, 392, 384, 358, 314, 262 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Limit of reversed rows equals A126348. Largest term in rows equal A126349.

LINKS

Table of n, a(n) for n=0..78.

Carl G. Wagner, Partition Statistics and q-Bell Numbers (q = -1), J. Integer Seqs., Vol. 7, 2004.

FORMULA

G.f. for row n: B(n,q) = 1/E_q*{0^n + Sum_{k>=1} [(q^k-1)/(q-1)]^n / q-Factorial(k)}, where q-Factorial(k) = Product_{j=1..k} [(q^j-1)/(q-1)] and where E_q = Sum_{n>=0} 1/q-Factorial(n) = Product_{n>=1} (1+(q-1)/q^n).

EXAMPLE

Number of terms in row n is: n*(n-1)/2 + 1.

Row functions B(n,q) begin:

B(0,q) = B(1,q) = 1;

B(1,q) = 1 + q;

B(2,q) = 1 + 2*q + q^2 + q^3;

B(3,q) = 1 + 3*q + 3*q^2 + 4*q^3 + 2*q^4 + q^5 + q^6.

Triangle begins:

1;

1;

1, 1;

1, 2, 1, 1;

1, 3, 3, 4, 2, 1, 1;

1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1;

1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1;

1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1; ...

MATHEMATICA

B[0, _] = 1; B[n_, q_] := B[n, q] = Sum[Binomial[n-1, k] B[k, q] q^k, {k, 0, n-1}] // Expand; Table[CoefficientList[B[n, q], q], {n, 0, 8}] // Flatten (* Jean-Fran├žois Alcover, Nov 08 2016 *)

PROG

(PARI) {B(n, q)=if(n==0, 1, sum(k=0, n-1, binomial(n-1, k)*B(k, q)*q^k))} {T(n, k)=Vec(B(n, q)+O(q^(n*(n-1)/2+1)))[k+1]}

(PARI) /* Alternative formula for the n-th q-Bell number (row n): */ {B(n, q)=local(inf=100); round((0^n + sum(k=1, inf, ((q^k-1)/(q-1))^n/prod(i=1, k, (q^i-1)/(q-1)))) / prod(k=1, inf, 1 + (q-1)/q^k))}

CROSSREFS

Cf. A126348, A126349, A000110; factorial variant: A126470.

Sequence in context: A124772 A227543 A079415 * A057001 A173072 A219272

Adjacent sequences:  A126344 A126345 A126346 * A126348 A126349 A126350

KEYWORD

nonn,tabf

AUTHOR

Paul D. Hanna, Dec 31 2006, May 28 2007

EXTENSIONS

Keyword:tabl changed to tabf - R. J. Mathar, Oct 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 10:44 EST 2017. Contains 294936 sequences.