This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A126347 Triangle, read by rows, where row n lists coefficients of q in B(n,q) that satisfies: B(n,q) = Sum_{k=0..n-1} C(n-1,k)*B(k,q)*q^k for n>0, with B(0,q) = 1; row sums equal the Bell numbers: B(n,1) = A000110(n). 4
 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 4, 2, 1, 1, 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1, 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1, 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1, 1, 7, 21, 56, 105, 161, 231, 302, 356, 379, 392, 384, 358, 314, 262 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Limit of reversed rows equals A126348. Largest term in rows equal A126349. LINKS Carl G. Wagner, Partition Statistics and q-Bell Numbers (q = -1), J. Integer Seqs., Vol. 7, 2004. FORMULA G.f. for row n: B(n,q) = 1/E_q*{0^n + Sum_{k>=1} [(q^k-1)/(q-1)]^n / q-Factorial(k)}, where q-Factorial(k) = Product_{j=1..k} [(q^j-1)/(q-1)] and where E_q = Sum_{n>=0} 1/q-Factorial(n) = Product_{n>=1} (1+(q-1)/q^n). EXAMPLE Number of terms in row n is: n*(n-1)/2 + 1. Row functions B(n,q) begin: B(0,q) = B(1,q) = 1; B(1,q) = 1 + q; B(2,q) = 1 + 2*q + q^2 + q^3; B(3,q) = 1 + 3*q + 3*q^2 + 4*q^3 + 2*q^4 + q^5 + q^6. Triangle begins: 1; 1; 1, 1; 1, 2, 1, 1; 1, 3, 3, 4, 2, 1, 1; 1, 4, 6, 10, 9, 7, 7, 4, 2, 1, 1; 1, 5, 10, 20, 25, 26, 29, 26, 20, 14, 12, 7, 4, 2, 1, 1; 1, 6, 15, 35, 55, 71, 90, 101, 100, 89, 82, 68, 53, 38, 26, 20, 12, 7, 4, 2, 1, 1; ... MATHEMATICA B[0, _] = 1; B[n_, q_] := B[n, q] = Sum[Binomial[n-1, k] B[k, q] q^k, {k, 0, n-1}] // Expand; Table[CoefficientList[B[n, q], q], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 08 2016 *) PROG (PARI) {B(n, q)=if(n==0, 1, sum(k=0, n-1, binomial(n-1, k)*B(k, q)*q^k))} {T(n, k)=Vec(B(n, q)+O(q^(n*(n-1)/2+1)))[k+1]} (PARI) /* Alternative formula for the n-th q-Bell number (row n): */ {B(n, q)=local(inf=100); round((0^n + sum(k=1, inf, ((q^k-1)/(q-1))^n/prod(i=1, k, (q^i-1)/(q-1)))) / prod(k=1, inf, 1 + (q-1)/q^k))} CROSSREFS Cf. A126348, A126349, A000110; factorial variant: A126470. Sequence in context: A124772 A227543 A079415 * A309240 A057001 A307689 Adjacent sequences:  A126344 A126345 A126346 * A126348 A126349 A126350 KEYWORD nonn,tabf AUTHOR Paul D. Hanna, Dec 31 2006, May 28 2007 EXTENSIONS Keyword:tabl changed to tabf - R. J. Mathar, Oct 21 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 03:41 EST 2019. Contains 329968 sequences. (Running on oeis4.)