OFFSET
0,5
COMMENTS
A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a middle child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference).
LINKS
Robert Israel, Table of n, a(n) for n = 0..1432
F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.
FORMULA
a(n) = Sum_{k=0..floor(n/2)-1} k*A126188(n,k).
G.f.: [1-9z+24z^2-18z^3-(1-6z+8z^2)sqrt(1-6z+5z^2)]/[z^2*sqrt(1-6z+5z^2)].
90*n*a(n)+(-294-228*n)*a(n+1)+(558+207*n)*a(2+n)+(-345-83*n)*a(n+3)+(84+15*n)*a(n+4)+(-7-n)*a(n+5) = 0. - Robert Israel, Dec 29 2016
MAPLE
G:=(1-9*z+24*z^2-18*z^3-(1-6*z+8*z^2)*sqrt(1-6*z+5*z^2))/z^2/sqrt(1-6*z+5*z^2): Gser:=series(G, z=0, 32): seq(coeff(Gser, z, n), n=0..27);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Dec 25 2006
STATUS
approved