login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126178 Triangle read by rows: T(n,k) is number of hex trees with n edges and k vertices of outdegree 1 (0<=k<=n). 0
1, 0, 3, 1, 0, 9, 0, 9, 0, 27, 2, 0, 54, 0, 81, 0, 30, 0, 270, 0, 243, 5, 0, 270, 0, 1215, 0, 729, 0, 105, 0, 1890, 0, 5103, 0, 2187, 14, 0, 1260, 0, 11340, 0, 20412, 0, 6561, 0, 378, 0, 11340, 0, 61236, 0, 78732, 0, 19683, 42, 0, 5670, 0, 85050, 0, 306180, 0, 295245, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a median child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read paper).

Sum of terms in row n = A002212(n+1).

Column 0 yields the aerated Catalan numbers (1,0,1,0,2,0,5,0,14,...).

T(n,n) = 3^n (see A000244).

Sum_{k=0..n} k*T(n,k) = 3*A026376(n) (n>=1).

LINKS

Table of n, a(n) for n=0..64.

F. Harary and R. C. Read, The enumeration of tree-like polyhexes, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.

FORMULA

T(n,k) = [3^k/(n+1)]binomial(n+1,k)*binomial(n+1-k,(n-k)/2) (0<=k<=n).

G.f.: G=G(t,z) satisfies G=1+3tzG+z^2*G^2.

EXAMPLE

Triangle starts:

  1;

  0,  3;

  1,  0,  9;

  0,  9,  0, 27;

  2,  0, 54,  0, 81;

MAPLE

T:=proc(n, k) if n-k mod 2 = 0 then 3^k*binomial(n+1, k)*binomial(n+1-k, (n-k)/2)/(n+1) else 0 fi end: for n from 0 to 11 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form

CROSSREFS

Cf. A000244, A002212, A026376.

Sequence in context: A194938 A299614 A135871 * A094753 A221713 A261765

Adjacent sequences:  A126175 A126176 A126177 * A126179 A126180 A126181

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Dec 19 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 06:26 EST 2019. Contains 320332 sequences. (Running on oeis4.)