

A126148


Primes p such that pq+p+q is prime, where q is the next prime after p.


12



2, 3, 5, 11, 13, 17, 19, 23, 41, 43, 47, 59, 79, 83, 89, 101, 109, 113, 137, 163, 167, 173, 223, 229, 257, 311, 383, 389, 409, 419, 439, 443, 479, 521, 547, 557, 577, 593, 613, 643, 647, 683, 773, 797, 809, 811, 853, 953, 983, 1019, 1049, 1097, 1109, 1151, 1171
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000


EXAMPLE

Take p = 13 and q = 17: product is 221 and sum is 30; add them to get 251, a prime. So 13 is a member.


MAPLE

a:=proc(n) if isprime(ithprime(n)*ithprime(n+1) +ithprime(n) +ithprime(n+1)) then ithprime(n) fi end: seq(a(n), n=1..250); # Emeric Deutsch, Mar 08 2007


MATHEMATICA

Prime@Select[Range[200], PrimeQ[Prime[ # ]Prime[ # + 1] + Prime[ # ] + Prime[ # + 1]] &] (* Ray Chandler, Mar 07 2007 *)


PROG

(PARI) v=List(); p=2; forprime(q=3, 1e4, if(isprime(p*q+p+q), listput(v, p)); p=q); Vec(v) \\ Charles R Greathouse IV, Jul 26 2012


CROSSREFS

Cf. A096342, A000040, A001043, A006094, A126199, A096342.
Sequence in context: A042997 A220815 A171600 * A264866 A038933 A042998
Adjacent sequences: A126145 A126146 A126147 * A126149 A126150 A126151


KEYWORD

nonn,easy


AUTHOR

J. M. Bergot, Mar 07 2007


EXTENSIONS

Extended by Ray Chandler, Emeric Deutsch and Robert G. Wilson v, Mar 07 2007


STATUS

approved



