login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126142 Primes p such that the sum of the decimal digits of p^2 is also a prime. 1
5, 7, 17, 29, 37, 47, 53, 61, 73, 79, 83, 89, 107, 109, 127, 137, 149, 151, 173, 181, 199, 223, 263, 269, 271, 277, 281, 349, 367, 379, 389, 433, 443, 457, 461, 503, 521, 547, 557, 587, 601, 613, 673, 677, 683, 691, 701, 727, 739, 773, 827, 853, 857, 863, 887 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n)^2 is of the form 6*k+1. [Vincenzo Librandi, Sep 21 2009; edited by Klaus Brockhaus, Nov 23 2009; edited by Bruno Berselli, Jun 06 2014]

This comment is trivially true: after 3, the square of each prime has the form 6*k+1. [Bruno Berselli, Jun 06 2014]

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

EXAMPLE

5^2=25, 2+5=7.

7^2=49, 4+9=13.

17^2=289, 2+8+9=19.

MAPLE

P:=proc(n) local i, k, w; for i from 1 by 1 to n do w:=0; k:=ithprime(i)^2; while k>0 do w:=w+(k-trunc(k/10)*10); k:=trunc(k/10); od; if isprime(w) then print(ithprime(i), w); fi; od; end: P(1000);

MATHEMATICA

Select[Prime[Range[1000]], PrimeQ[Apply[Plus, IntegerDigits[#^2]]] &] (* Vincenzo Librandi, Jun 06 2014 *)

PROG

(MAGMA) [p: p in PrimesUpTo(1000) | IsPrime(&+Intseq(p^2))]; // Klaus Brockhaus, Nov 23 2010

CROSSREFS

Sequence in context: A032412 A114970 A048710 * A216560 A019340 A290471

Adjacent sequences:  A126139 A126140 A126141 * A126143 A126144 A126145

KEYWORD

nonn,base,easy

AUTHOR

Paolo P. Lava and Giorgio Balzarotti, Mar 07 2007

EXTENSIONS

Definition reworded by Klaus Brockhaus, Nov 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 05:36 EDT 2019. Contains 321422 sequences. (Running on oeis4.)