|
|
A126089
|
|
Expansion of e.g.f.: (1-2*x)*sqrt(1-4*x).
|
|
1
|
|
|
1, -4, 4, 0, -48, -960, -20160, -483840, -13305600, -415134720, -14529715200, -564583219200, -24135932620800, -1126343522304000, -56992982228582400, -3108708121559040000, -181859425111203840000, -11359219476176732160000, -754576722346025779200000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..18.
|
|
FORMULA
|
a(n) ~ -2^(2*n-3/2)*n^(n-1)/exp(n). - Vaclav Kotesovec, Jun 02 2013
D-finite with recurrence: a(n) -4*n*a(n-1) +12*(2*n-7)*a(n-2)=0. - R. J. Mathar, Jan 24 2020
Conjecture D-finite with recurrence: (-n+4)*a(n) +2*(2*n-5)*(n-3)*a(n-1)=0. - R. J. Mathar, Jan 24 2020
|
|
MATHEMATICA
|
CoefficientList[Series[(1-2*x)*Sqrt[1-4*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 02 2013 *)
|
|
PROG
|
(MAGMA) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1-2*x)*Sqrt(1-4*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // Vincenzo Librandi, Jan 25 2020
(PARI) seq(n)={Vec(serlaplace((1-2*x)*sqrt(1-4*x + O(x*x^n))))} \\ Andrew Howroyd, Jan 25 2020
|
|
CROSSREFS
|
Cf. A126967, A126079.
Sequence in context: A137862 A006805 A030045 * A111848 A204384 A102412
Adjacent sequences: A126086 A126087 A126088 * A126090 A126091 A126092
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
N. J. A. Sloane, Mar 22 2007
|
|
STATUS
|
approved
|
|
|
|