login
a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digit 1, at least one of digits 2,3,4,5 and at least one of digits 6,7,8,9.
19

%I #12 Jun 13 2015 00:52:18

%S 9,81,729,6513,57369,495921,4194969,34689393,280607769,2224214961,

%T 17313344409,132651929073,1002605145369,7490229758001,55407572177049,

%U 406450276733553,2960529995462169,21435301615525041,154414691892116889,1107604165960750833

%N a(n) is the number of nonnegative integers k less than 10^n such that the decimal representation of k lacks the digit 1, at least one of digits 2,3,4,5 and at least one of digits 6,7,8,9.

%H Colin Barker, <a href="/A125947/b125947.txt">Table of n, a(n) for n = 1..1000</a>

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (28,-322,1960,-6769,13132,-13068,5040).

%F a(n) = 16*7^n-48*6^n+68*5^n-56*4^n+28*3^n-8*2^n+1.

%F G.f.: -3*x*(1680*x^6 -3988*x^5 +3968*x^4 -1819*x^3 +453*x^2-57*x+3) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)). - _Colin Barker_, Feb 22 2015

%e a(8) = 34689393.

%p f:=n->16*7^n-48*6^n+68*5^n-56*4^n+28*3^n-8*2^n+1;

%o (PARI) Vec(-3*x*(1680*x^6 -3988*x^5 +3968*x^4 -1819*x^3 +453*x^2-57*x+3) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)) + O(x^100)) \\ _Colin Barker_, Feb 22 2015

%Y Cf. A125630.

%K nonn,base,easy

%O 1,1

%A Aleksandar M. Janjic and _Milan Janjic_, Feb 04 2007