login
A125866
Odd numbers k such that cos(2*Pi/k) is an algebraic number of a 3-smooth degree, but not 2-smooth.
14
7, 9, 13, 19, 21, 27, 35, 37, 39, 45, 57, 63, 65, 73, 81, 91, 95, 97, 105, 109, 111, 117, 119, 133, 135, 153, 163, 171, 185, 189, 193, 195, 219, 221, 243, 247, 259, 273, 285, 291, 315, 323, 327, 333, 351, 357, 365, 399, 405, 433, 455, 459, 481, 485, 487, 489
OFFSET
1,1
COMMENTS
Odd terms of A051913.
This sequence is infinite (unlike A004729), because it contains any A058383(n) times any power of 3.
A regular polygon of a(n) sides can be constructed if one also has an angle trisector.
LINKS
MAPLE
filter:= proc(n) local r, a, b;
r:= numtheory:-phi(n);
a:= padic:-ordp(r, 2);
b:= padic:-ordp(r, 3);
if b = 0 then return false fi;
r = 2^a*3^b;
end proc:
select(filter, [seq(i, i=3..1000, 2)]); # Robert Israel, May 11 2020
MATHEMATICA
Do[If[Take[FactorInteger[EulerPhi[2n+1]][[ -1]], 1]=={3}, Print[2n+1]], {n, 1, 10000}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 13 2006
EXTENSIONS
Edited by Don Reble, Apr 24 2007
STATUS
approved