login
A125849
a(n) = Sum_{m=1..n-1} floor(m(n-2)/2)^2.
1
0, 0, 0, 1, 14, 62, 220, 547, 1260, 2444, 4560, 7685, 12650, 19466, 29484, 42567, 60760, 83672, 114240, 151689, 200070, 258070, 331100, 417131, 523204, 646372, 795600, 966797, 1171170, 1403234, 1676780, 1984655, 2343600, 2744496, 3207424
OFFSET
0,5
FORMULA
G.f.: (x^3*(x^6+18*x^5+35*x^4+62*x^3+31*x^2+12*x+1))/((x+1)^4*(x-1)^6). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009
MAPLE
for n from 0 to 15 do add( floor(m*(n-2)/2)^2, m=1..n-1) ; print(n, %) ; od: # R. J. Mathar
MATHEMATICA
f[n_] := Sum[ Floor[m (n - 2)/2]^2, {m, n - 1}]; Table[ f@n, {n, 0, 35}] (* Robert G. Wilson v, Aug 03 2008 *)
CROSSREFS
Sequence in context: A025415 A371420 A307253 * A003695 A022674 A044152
KEYWORD
nonn
AUTHOR
Jerry Metzger, Jul 09 2008
EXTENSIONS
More terms from Robert G. Wilson v, Aug 03 2008
STATUS
approved