login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125815 q-Bell numbers for q=5; eigensequence of A022169, which is the triangle of Gaussian binomial coefficients [n,k] for q=5. 6
1, 1, 2, 9, 103, 3276, 307867, 89520089, 83657942588, 258923776689771, 2717711483011792407, 98702105953049319472394, 12629828399521800714941435773, 5784963467206342855747483263957541 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..13.

FORMULA

a(n) = Sum_{k=0..n-1} A022169(n-1,k) * a(k) for n>0, with a(0)=1.

EXAMPLE

The recurrence: a(n) = Sum_{k=0..n-1} A022169(n-1,k) * a(k)

is illustrated by:

a(2) = 1*(1) + 6*(1) + 1*(2) = 9;

a(3) = 1*(1) + 31*(1) + 31*(2) + 1*(9) = 103;

a(4) = 1*(1) + 156*(1) + 806*(2) + 156*(9) + 1*(103) = 3276.

Triangle A022169 begins:

1;

1, 1;

1, 6, 1;

1, 31, 31, 1;

1, 156, 806, 156, 1;

1, 781, 20306, 20306, 781, 1;

1, 3906, 508431, 2558556, 508431, 3906, 1; ...

PROG

(PARI) /* q-Binomial coefficients: */ {C_q(n, k)=if(n<k || k<0, 0, if(n==0 || k==0, 1, prod(j=n-k+1, n, 1-q^j)/prod(j=1, k, 1-q^j)))} /* q-Bell numbers = eigensequence of q-binomial triangle: */ {B_q(n)=if(n==0, 1, sum(k=0, n-1, B_q(k)*C_q(n-1, k)))} /* Eigensequence at q=5: */ {a(n)=subst(B_q(n), q, 5)}

CROSSREFS

Cf. A022169, A125810, A125811, A125812, A125813, A125814.

Sequence in context: A041239 A098610 A226391 * A132494 A136172 A012986

Adjacent sequences:  A125812 A125813 A125814 * A125816 A125817 A125818

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 06:06 EDT 2019. Contains 324183 sequences. (Running on oeis4.)