The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125790 Rectangular table where column k equals row sums of matrix power A078121^k, read by antidiagonals. 13
 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 10, 9, 4, 1, 1, 36, 35, 16, 5, 1, 1, 202, 201, 84, 25, 6, 1, 1, 1828, 1827, 656, 165, 36, 7, 1, 1, 27338, 27337, 8148, 1625, 286, 49, 8, 1, 1, 692004, 692003, 167568, 25509, 3396, 455, 64, 9, 1, 1, 30251722, 30251721, 5866452, 664665 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Determinant of n X n upper left submatrix is 2^[n(n-1)(n-2)/6] (see A125791). Related to partitions of numbers into powers of 2 (see A078121). Triangle A078121 shifts left one column under matrix square. LINKS G. Blom and C.-E. Froeberg, Om myntvaexling (On money-changing) [Swedish], Nordisk Matematisk Tidskrift, 10 (1962), 55-69, 103. [Annotated scanned copy] See Table 5. FORMULA T(n,k) = T(n,k-1) + T(n-1,2*k) for n>0, k>0, with T(0,n)=T(n,0)=1 for n>=0. EXAMPLE Recurrence T(n,k) = T(n,k-1) + T(n-1,2*k) is illustrated by: T(4,3) = T(4,2) + T(3,6) = 201 + 455 = 656; T(5,3) = T(5,2) + T(4,6) = 1827 + 6321 = 8148; T(6,3) = T(6,2) + T(5,6) = 27337 + 140231 = 167568. Rows of this table begin: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...; 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, ...; 1, 10, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, ...; 1, 36, 201, 656, 1625, 3396, 6321, 10816, 17361, 26500, 38841, ...; 1, 202, 1827, 8148, 25509, 64350, 140231, 274856, 497097, ...; 1, 1828, 27337, 167568, 664665, 2026564, 5174449, 11622976, ...; 1, 27338, 692003, 5866452, 29559717, 109082974, 326603719, ...; 1, 692004, 30251721, 356855440, 2290267225, 10243585092, ...; ... Triangle A078121 begins: 1; 1, 1; 1, 2, 1; 1, 4, 4, 1; 1, 10, 16, 8, 1; 1, 36, 84, 64, 16, 1; 1, 202, 656, 680, 256, 32, 1; ... where row sums form column 1 of this table A125790, and column k of A078121 equals column 2^k-1 of this table A125790. Matrix cube A078121^3 begins: 1; 3, 1; 9, 6, 1; 35, 36, 12, 1; 201, 286, 144, 24, 1; 1827, 3396, 2300, 576, 48, 1; ... where row sums form column 3 of this table A125790, and column 0 of A078121^3 forms column 2 of this table A125790. MATHEMATICA T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, 2*k]; T[0, _] = T[_, 0] = 1; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 15 2015 *) PROG (PARI) {T(n, k, p=0, q=2)=local(A=Mat(1), B); if(n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 11:31 EDT 2020. Contains 336298 sequences. (Running on oeis4.)