login
A125786
Column 6 of table A125781.
5
1, 7, 39, 216, 1274, 8200, 58017, 451283, 3847960, 35818351, 362337006, 3965467281, 46749441514, 591291743032, 7993582141984, 115104783083605, 1759853074058289, 28485332959460764, 486811835886953020
OFFSET
0,2
COMMENTS
Column k of triangle A091351 = row sums of matrix power A091351^k for k>=0.
FORMULA
a(n) = Sum_{k=0..n} [A091351^2](n+2,k+2) where A091351^2 is the matrix square of A091351.
EXAMPLE
a(n) = A125784(n+1) - A125783(n+1) for n>0:
A125784 begins: 1, 5, 21, 91, 433, 2307, 13804, 92433, 688611, ...;
A125783 begins: 1, 4, 14, 52, 217, 1033, 5604, 34416, 237328, ...;
term-by-term differences form this sequence.
This sequence can also be derived from the matrix square A091351^2:
1;
2, 1;
4, 4, [1];
9, 14, [6, 1];
24, 52, [30, 8, 1];
77, 217, [153, 52, 10, 1];
295, 1033, [845, 336, 80, 12, 1];
1329, 5604, [5152, 2294, 625, 114, 14, 1]; ...
the terms enclosed in square barackets sum to equal this sequence.
CROSSREFS
Cf. A125781; other columns: A091352, A125782, A125783, A125784, A125785.
Sequence in context: A322876 A092923 A164550 * A287809 A155589 A071082
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 09 2006
STATUS
approved