The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125739 Primes p such that 3^p + 3^((p + 1)/2) + 1 is prime. 3
 3, 5, 7, 17, 19, 79, 163, 317, 353, 1049, 1759, 5153, 7541, 23743, 2237561 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS PrimePi[ a(n) ] = {2, 3, 4, 7, 8, 22, 38, 66, 71, 176, 274, 687, 956, ...}, the indices of the primes p. a(16) > 2300000. - Serge Batalov, Oct 12 2014 LINKS J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002. S. S. Wagstaff, Jr., The Cunningham Project. MATHEMATICA Do[p=Prime[n]; f=3^p+3^((p+1)/2)+1; If[PrimeQ[f], Print[{n, p}]], {n, 1, 200}] PROG (PARI) lista(nn) = {forprime(p=3, nn, if (ispseudoprime(3^p + 3^((p + 1)/2) + 1), print1(p, ", ")); ); } \\ Michel Marcus, Oct 13 2014 (MAGMA) [p: p in PrimesUpTo(5000) | IsPrime(3^p+3^((p+1)div 2)+1)]; // Vincenzo Librandi, Oct 13 2014 CROSSREFS Cf. A125738 = Primes p such that 3^p - 3^((p + 1)/2) + 1 is prime. Cf. A007670 = Numbers n such that 2^n - 2^((n + 1)/2) + 1 is prime. Cf. A007671 = Numbers n such that 2^n + 2^((n + 1)/2) + 1 is prime. Cf. A066408 = Numbers n such that the Eisenstein integer has prime norm. Sequence in context: A087126 A331800 A062547 * A219461 A122853 A137258 Adjacent sequences:  A125736 A125737 A125738 * A125740 A125741 A125742 KEYWORD hard,more,nonn AUTHOR Alexander Adamchuk, Dec 02 2006 EXTENSIONS a(11)-a(13) from Stefan Steinerberger, Sep 08 2007 a(14) from Lelio R Paula (lelio(AT)sknet.com.br), May 07 2008 a(15) from Serge Batalov, Oct 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 19:09 EDT 2020. Contains 336483 sequences. (Running on oeis4.)