This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125717 a(0)=0. a(n) = the smallest positive integer not occurring earlier in the sequence such that a(n-1) is congruent to a(n) (mod n). 5
 0, 1, 3, 6, 2, 7, 13, 20, 4, 22, 12, 23, 11, 24, 10, 25, 9, 26, 8, 27, 47, 5, 49, 72, 48, 73, 21, 75, 19, 77, 17, 79, 15, 81, 115, 45, 117, 43, 119, 41, 121, 39, 123, 37, 125, 35, 127, 33, 129, 31, 131, 29, 133, 80, 134, 189, 245, 74, 16, 193, 253, 70, 132, 69, 197, 67, 199, 65 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This sequence seems likely to be a permutation of the nonnegative integers. A245340(n) = smallest m such that a(m) = n, or -1 if n never appears; see A245394 and A245395 for record values and where they occur. - Reinhard Zumkeller, Jul 21 2014 A very nice (maybe the most natural) variant of Recamán's sequence A005132. - M. F. Hasler, Nov 03 2014 LINKS Ferenc Adorján and Reinhard Zumkeller, Table of n, a(n) for n = 0..100000 (first 10000 terms from Ferenc Adorján) Ferenc Adorján, Some characteristics of _Leroy Quet_'s permutation sequences MATHEMATICA f[l_List] := Block[{n = Length[l] + 1, k = Mod[l[[ -1]], n, 1]}, While[MemberQ[l, k], k += n]; Append[l, k]]; Nest[f, {1}, 70] (*Chandler*) PROG (PARI) {Quet_p2(n)=/* Permutation sequence a'la Leroy Quet, A125717 */local(x=[1], k=0, w=1); for(i=2, n, if((k=x[i-1]%i)==0, k=i); while(bittest(w, k-1)>0, k+=i); x=concat(x, k); w+=2^(k-1)); return(x)} [Ferenc Adorjan] (Haskell) import Data.IntMap (singleton, member, (!), insert) a125717 n = a125717_list !! n a125717_list =  0 : f [1..] 0 (singleton 0 0) where    f (v:vs) w m = g (reverse[w-v, w-2*v..1] ++ [w+v, w+2*v..]) where      g (x:xs) = if x `member` m then g xs else x : f vs x (insert x v m) -- Reinhard Zumkeller, Jul 21 2014 (PARI) A125717(n, show=0)={my(u=1, a); for(n=1, n, a%=n; while(bittest(u, a), a+=n); u+=1<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 19 11:01 EST 2018. Contains 317350 sequences. (Running on oeis4.)