login
A125682
a(n) = (6^n - 1)*3/5.
2
3, 21, 129, 777, 4665, 27993, 167961, 1007769, 6046617, 36279705, 217678233, 1306069401, 7836416409, 47018498457, 282110990745, 1692665944473, 10155995666841, 60935974001049, 365615844006297, 2193695064037785, 13162170384226713, 78973022305360281
OFFSET
1,1
COMMENTS
The base-6 numbers 3_6, 33_6, 333_6, 3333_6, 33333_6, 333333_6, ... converted to base 10.
Also the total number of holes in a certain triangle fractal (start with 6 triangles, 3 holes) after n iterations. See illustration in Ngaokrajang link. - Jens Ahlström, Aug 29 2023
FORMULA
G.f.: 3*x/((1-x)*(1-6*x)). - Bruno Berselli, Apr 18 2012
a(n) = 7*a(n-1) - 6*a(n-2). - Wesley Ivan Hurt, Dec 25 2021
EXAMPLE
Base 6 Base 10
3 ............. 3 = 3*6^0
33 ........... 21 = 3*6^1 + 3*6^0
333 ......... 129 = 3*6^2 + 3*6^1 + 3*6^0
3333 ........ 777 = 3*6^3 + 3*6^2 + 3*6^1 + 3*6^0, etc.
MAPLE
seq((6^n-1)*3/5, n=1..27);
MATHEMATICA
a[n_]:=(6^n-1)*3/5; Table[a[n], {n, 1, 22}] (* Robert P. P. McKone, Aug 29 2023 *)
PROG
(Magma) [(6^n-1)*3/5: n in [1..22]]; // Bruno Berselli, Apr 18 2012
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Jan 31 2007
EXTENSIONS
Edited by N. J. A. Sloane, Feb 02 2007
Definition rewritten (with Lajos formula) from Bruno Berselli, Apr 18 2012
STATUS
approved