
Empirical count:
Count regions on every triangle (colorized alternated), from right to left (as indicated for $\mathrm{N}=3$). We observe some arithmetic progressions (AP):

For	Regions in triangles (from right to left) and totals	This sum is:
$\mathrm{N}=1$	$1=1$	Sum of 1 terms of AP beginning with 1 and common difference $=0=\sum_{k=0}^{N-1} k$
$\mathrm{N}=2$	$2+3=5$	Sum of 2 terms of AP beginning with 2 and common difference $=1=\sum_{k=0}^{N-1} k$
$\mathrm{N}=3$	$3+6+9=18$	Sum of 3 terms of AP beginning with 3 and common difference $=3=\sum_{k=0}^{N-1} k$
$\mathrm{N}=4$	$4+10+16+22=52$	Sum of 4 terms of AP beginning with 4 and common difference $=6=\sum_{k=0}^{N-1} k$
$\mathrm{N}=5$	$5+15+25+35+45=125$	Sum of 5 terms of AP beginning with 5 and common difference $=10=\sum_{k=0}^{N-1} k$
Conjeture:		
N		Sum of N terms of AP beginning with N and common difference $=\sum_{k=0}^{N-1} k$

If we remember that $\sum_{k=1}^{n} p_{k}=\frac{n \cdot\left(2 \cdot p_{1}+(n-1) \cdot d\right)}{2}$ for an AP beginning with p_{1} and common difference d , it is easy to deduce that, if this conjecture is proved to be true, then the number of regions for $\mathrm{N}=\mathrm{n}$ is:

$$
a(n)=\frac{1}{4} n^{2}\left(n^{2}-2 n+5\right)
$$

which coincides with A125641.

