The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125630 a(n) is the number of integers k less than 10^n such that the decimal representation of k lacks the digit 1 and at least one of digits 2,3,4,5,6,7,8,9. 31
 9, 81, 729, 6561, 59049, 531441, 4782969, 43006401, 385606089, 3440214801, 30482931609, 267934415841, 2334817386729, 20170171738161, 172797111134649, 1468818073594881, 12396189742824969, 103943773544221521, 866556801437680089, 7187319207979903521 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Note that the first seven terms of the sequence are powers of 9. LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320). FORMULA a(n) = 8*8^n-28*7^n+56*6^n-70*5^n+56*4^n-28*3^n+8*2^n-1. G.f.: -9*x*(4480*x^7 -12176*x^6 +11772*x^5 -6168*x^4 +1809*x^3 -303*x^2 +27*x -1)/((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)*(8*x -1)). - Colin Barker, Feb 22 2015 EXAMPLE a(5) = 59049. MAPLE f:=n->8*8^n-28*7^n+56*6^n-70*5^n+56*4^n-28*3^n+8*2^n-1; PROG (PARI) Vec(-9*x*(4480*x^7-12176*x^6+11772*x^5-6168*x^4+1809*x^3-303*x^2+27*x-1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)) + O(x^100)) \\ Colin Barker, Feb 22 2015 CROSSREFS Sequence in context: A228972 A125947 A120997 * A100062 A001019 A074118 Adjacent sequences:  A125627 A125628 A125629 * A125631 A125632 A125633 KEYWORD nonn,base,easy AUTHOR Aleksandar M. Janjic and Milan Janjic, Jan 28 2007, Feb 13 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 20:58 EDT 2020. Contains 334597 sequences. (Running on oeis4.)