|
|
A125612
|
|
Smallest prime p such that 11^n divides p^10 - 1.
|
|
21
|
|
|
2, 3, 2663, 45989, 275393, 2120879, 28723679, 174625993, 4715895383, 24262286441, 1194631280321, 3143820659087, 138090848575723, 488581592070877, 6266190914259137, 367597838908577287
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..16.
W. Keller and J. Richstein Fermat quotients that are divisible by p.
|
|
MATHEMATICA
|
spp[n_]:=Module[{p=2, c=11^n}, While[PowerMod[p, 10, c]!=1, p=NextPrime[p]]; p]; Array[spp, 16] (* Harvey P. Dale, Aug 08 2019 *)
|
|
PROG
|
(PARI) See A125609
|
|
CROSSREFS
|
Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.
Sequence in context: A137321 A066848 A324310 * A185156 A235935 A182383
Adjacent sequences: A125609 A125610 A125611 * A125613 A125614 A125615
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alexander Adamchuk, Nov 28 2006
|
|
EXTENSIONS
|
More terms from Ryan Propper, Jan 03 2007
More terms from Martin Fuller, Jan 11 2007
|
|
STATUS
|
approved
|
|
|
|