OFFSET
1,1
LINKS
Robert Israel, Table of n, a(n) for n = 1..1424
W. Keller and J. Richstein Fermat quotients that are divisible by p.
MAPLE
f:= proc(n) local k, p2, P, t;
p2:= numtheory:-msqrt(-1, 5^n);
P:= sort([1, p2, 5^n-p2, 5^n-1]);
for k from 0 do
for t in P do
if isprime(k*5^n+t) then return k*5^n+t fi
od od:
end proc:
map(f, [$1..30]); # Robert Israel, Oct 27 2019
PROG
(PARI) See A125609 - Martin Fuller, Jan 11 2007
CROSSREFS
Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.
KEYWORD
hard,nonn
AUTHOR
Alexander Adamchuk, Nov 28 2006
EXTENSIONS
More terms from Ryan Propper, Jan 02 2007
More terms from Martin Fuller, Jan 11 2007
STATUS
approved