login
Primes p=prime(i) of level (1,15), i.e., such that A118534(i)=prime(i-15).
7

%I #19 Jun 19 2021 04:53:27

%S 264426203,295902073,361949821,704544167,1075639757,1259347393,

%T 1290546427,1301756207,1335396547,1370742383,1460811643,1497078991,

%U 1514647247,1643839649,1783137281,2142070103,2424093281,2471124197,2494743721,2577014057,2706824389,2951139253

%N Primes p=prime(i) of level (1,15), i.e., such that A118534(i)=prime(i-15).

%C This subsequence of A125830 and of A162174 gives primes of level (1,15): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

%H Fabien Sibenaler, <a href="/A125576/b125576.txt">Table of n, a(n) for n = 1..100</a>

%e prime(16042282) - prime(16042281) = 295902247 - 295902073 = 295902073 - 295901899 = prime(16042281) - prime(16042281-15) and prime(16042281) has level 1 in A117563, so prime(16042281)=295902073 has level (1,15).

%o (PARI) lista(nn) = my(c=16, v=primes(16)); forprime(p=59, nn, if(2*v[c]-p==v[c=c%16+1], print1(precprime(p-1), ", ")); v[c]=p); \\ _Jinyuan Wang_, Jun 18 2021

%Y Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.

%K nonn

%O 1,1

%A _RĂ©mi Eismann_ and _Fabien Sibenaler_, Jan 27 2007

%E Definition and comment reworded following suggestions from the authors. - _M. F. Hasler_, Nov 30 2009

%E Terms a(5) and beyond from b-file by _Andrew Howroyd_, Feb 05 2018