login
Primes p=prime(i) of level (1,14), i.e., such that A118534(i)=prime(i-14).
5

%I #14 Jun 19 2021 04:01:18

%S 31515413,69730637,132102911,132375259,215483129,284491367,325689253,

%T 388190689,548369603,620829113,633418787,638213603,670216277,

%U 793852487,797759539,960200149,1038197399,1050359137,1092920249,1331713301,1342954871,1349496367,1365964199

%N Primes p=prime(i) of level (1,14), i.e., such that A118534(i)=prime(i-14).

%C This subsequence of A125830 and of A162174 gives primes of level (1,14): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).

%H Fabien Sibenaler, <a href="/A125574/b125574.txt">Table of n, a(n) for n = 1..250</a>

%e prime(15456800) - prime(15456799) = 284491601 - 284491367 = 284491367 - 284491133 = prime(15456799) - prime(15456799-14) and prime(15456799) has level 1 in A117563, so prime(15456799) = 284491367 has level (1,14).

%o (PARI) lista(nn) = my(c=15, v=primes(15)); forprime(p=53, nn, if(2*v[c]-p==v[c=c%15+1], print1(precprime(p-1), ", ")); v[c]=p); \\ _Jinyuan Wang_, Jun 18 2021

%Y Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.

%K nonn

%O 1,1

%A _RĂ©mi Eismann_ and _Fabien Sibenaler_, Jan 27 2007

%E Definition and comment reworded following suggestions from the authors. - _M. F. Hasler_, Nov 30 2009