login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125551 As p runs through primes >= 5, sequence gives { numerator of Sum_{k=1..p-1} 1/k^2 } / p. 2
41, 767, 178939, 18500393, 48409924397, 12569511639119, 15392144025383, 358066574927343685421, 282108494885353559158399, 911609127797473147741660153, 1128121200256091571107985892349 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

This is an integer by a theorem of Waring and Wolstenholme.

LINKS

Table of n, a(n) for n=3..13.

R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057, 2011

MAPLE

f1:=proc(n) local p;

p:=ithprime(n);

(1/p)*numer(add(1/i^2, i=1..p-1));

end proc;

[seq(f1(n), n=3..20)];

MATHEMATICA

a = {}; Do[AppendTo[a, (1/(Prime[x]))Numerator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]], {x, 3, 50}]; a

CROSSREFS

Cf. A061002, A034602, A186720, A186722.

Sequence in context: A246642 A167737 A268993 * A087856 A010957 A161662

Adjacent sequences:  A125548 A125549 A125550 * A125552 A125553 A125554

KEYWORD

nonn

AUTHOR

Artur Jasinski, Jan 03 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 09:29 EST 2017. Contains 295115 sequences.