This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125551 As p runs through primes >= 5, sequence gives { numerator of Sum_{k=1..p-1} 1/k^2 } / p. 2
 41, 767, 178939, 18500393, 48409924397, 12569511639119, 15392144025383, 358066574927343685421, 282108494885353559158399, 911609127797473147741660153, 1128121200256091571107985892349 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS This is an integer by a theorem of Waring and Wolstenholme. LINKS R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057, 2011 MAPLE f1:=proc(n) local p; p:=ithprime(n); (1/p)*numer(add(1/i^2, i=1..p-1)); end proc; [seq(f1(n), n=3..20)]; MATHEMATICA a = {}; Do[AppendTo[a, (1/(Prime[x]))Numerator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]], {x, 3, 50}]; a CROSSREFS Cf. A061002, A034602, A186720, A186722. Sequence in context: A246642 A167737 A268993 * A087856 A010957 A161662 Adjacent sequences:  A125548 A125549 A125550 * A125552 A125553 A125554 KEYWORD nonn AUTHOR Artur Jasinski, Jan 03 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.