login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125551 As p runs through primes >= 5, sequence gives { numerator of Sum_{k=1..p-1} 1/k^2 } / p. 2
41, 767, 178939, 18500393, 48409924397, 12569511639119, 15392144025383, 358066574927343685421, 282108494885353559158399, 911609127797473147741660153, 1128121200256091571107985892349 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

COMMENTS

This is an integer by a theorem of Waring and Wolstenholme.

LINKS

Table of n, a(n) for n=3..13.

R. Mestrovic, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2011), arXiv:1111.3057, 2011

MAPLE

f1:=proc(n) local p;

p:=ithprime(n);

(1/p)*numer(add(1/i^2, i=1..p-1));

end proc;

[seq(f1(n), n=3..20)];

MATHEMATICA

a = {}; Do[AppendTo[a, (1/(Prime[x]))Numerator[Sum[1/x^2, {x, 1, Prime[x] - 1}]]], {x, 3, 50}]; a

CROSSREFS

Cf. A061002, A034602, A186720, A186722.

Sequence in context: A246642 A167737 A268993 * A087856 A010957 A161662

Adjacent sequences:  A125548 A125549 A125550 * A125552 A125553 A125554

KEYWORD

nonn

AUTHOR

Artur Jasinski, Jan 03 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 26 10:42 EDT 2017. Contains 284111 sequences.