login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125514 Theta series of 4-dimensional lattice QQF.4.i. 4
1, 4, 20, 4, 52, 24, 20, 32, 116, 4, 120, 48, 52, 56, 160, 24, 244, 72, 20, 80, 312, 32, 240, 96, 116, 124, 280, 4, 416, 120, 120, 128, 500, 48, 360, 192, 52, 152, 400, 56, 696, 168, 160, 176, 624, 24, 480, 192, 244, 228, 620, 72, 728, 216, 20, 288, 928, 80, 600, 240, 312 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

John Cannon, Table of n, a(n) for n = 0..5000

G. Nebe and N. J. A. Sloane, Home page for this lattice

FORMULA

Contribution from Michael Somos, May 27 2012: (Start)

Expansion of (eta(q^2) * eta(q^3))^7 / (eta(q) * eta(q^6))^5 - (eta(q) * eta(q^6))^7 / (eta(q^2) * eta(q^3))^5 in powers of q.

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = + 5*u^4 + 637*v^4 + 1280*w^4 + 352*u^2*w^2 + 342*u^2*v^2 + 5472*v^2*w^2 + 64*u^3*w + 1024*u*w^3 - 68*u^3*v - 756*u*v^3 - 4352*v*w^3 - 3024*v^3*w - 688*u^2*v*w + 2464*u*v^2*w - 2752*u*v*w^2.

G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24 (t/i)^2 f(t) where q = exp(2 Pi i t).

Convolution of A030188 and A058490. a(3*n) = a(n). (end)

a(n) = 4*b(n) where b(n) is multiplicative and b(2^e) = 2^(e+2) - 3, b(3^e) = 1,  b(p^e) = (p^(e+1) - 1)/(p - 1) otherwise. - Michael Somos, Nov 19 2013

a(n) = A006353(n) - A123532(n). a(6*n + 5) = 24 * A098098(n). - Michael Somos, Nov 19 2013

EXAMPLE

G.f. = 1 + 4*x + 20*x^2 + 4*x^3 + 52*x^4 + 24*x^5 + 20*x^6 + 32*x^7 + 116*x^8 + ...

G.f. = 1 + 4*q^2 + 20*q^4 + 4*q^6 + 52*q^8 + 24*q^10 + 20*q^12 + 32*q^14 + 116*q^16 + ...

MATHEMATICA

a[ n_] := With[{A = QPochhammer[ q] QPochhammer[ q^6], B = QPochhammer[ q^2] QPochhammer[ q^3]}, SeriesCoefficient[ B^7 / A^5 - q A^7 / B^5, {q, 0, n}]] (* Michael Somos, Nov 19 2013 *)

PROG

(PARI) {a(n) = if( n<1, n==0, 2 * qfrep( [ 2, 0, 1, 1; 0, 2, 1, 1; 1, 1, 4, 1; 1, 1, 1, 4 ], n, 1)[n])} /* Michael Somos, May 27 2012 */

(PARI) {a(n) = local(A, B); if( n<0, 0, A = x * O(x^n); B = eta(x^2 + A) * eta(x^3 + A); A = eta(x + A) * eta(x^6 + A); polcoeff( B^7 / A^5 - x * A^7 / B^5, n))} /*  Michael Somos, May 27 2012 */

(PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 4 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 2^(e+2) - 3, if( p==3, 1, (p^(e+1) - 1)/(p - 1))))))} /* Michael Somos, Nov 19 2013 */

(Sage) A = ModularForms( Gamma0(6), 2, prec=56) . basis(); A[0] + 4*A[1] + 20*A[2]; # Michael Somos, Nov 19 2013

(MAGMA) A := Basis(ModularForms( Gamma0(6), 2)); PowerSeries( A[1] + 4*A[2] + 20*A[3], 56); /* Michael Somos, Nov 19 2013 */

CROSSREFS

Cf. A006353, A030188, A058490, A098098, A123532.

Sequence in context: A039921 A081852 A050017 * A118392 A263964 A180855

Adjacent sequences:  A125511 A125512 A125513 * A125515 A125516 A125517

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 31 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 05:37 EST 2020. Contains 331067 sequences. (Running on oeis4.)