login
A125513
a(n) is the number of binary strings of length n such that no subsequence of length 5 or less contains 4 or more ones.
1
2, 4, 8, 15, 26, 48, 89, 165, 305, 561, 1034, 1908, 3521, 6496, 11982, 22101, 40770, 75210, 138741, 255934, 472117, 870911, 1606567, 2963628, 5466988, 10084919, 18603592, 34317946, 63306130, 116780470, 215424285, 397391986, 733066807
OFFSET
1,1
FORMULA
a(n) = a(n-1) + a(n-2) + a(n-4) + 2a(n-5) - a(n-7) - a(n-10).
G.f.: x*(2+2*x+2*x^2+3*x^3+x^4-x^5-x^6-x^7-x^8-x^9)/(1-x-x^2-x^4-2*x^5+x^7+x^ 10) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009]
CROSSREFS
This sequence is similar to the sequences A118647 (where no substring of length 4 contains 3 or more ones), because the number of ones we are checking for is one less than the length of a substring. It is also similar to A120118 (where no substring of length 5 contains 3 or more ones.).
Sequence in context: A279320 A182844 A191630 * A054174 A239890 A331554
KEYWORD
nonn
AUTHOR
Tanya Khovanova, Dec 28 2006
EXTENSIONS
G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
STATUS
approved