The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125509 Theta series of 4-dimensional lattice QQF.4.f. 2
 1, 0, 0, 12, 12, 0, 12, 0, 24, 12, 24, 24, 24, 12, 24, 24, 24, 24, 36, 24, 48, 48, 48, 0, 60, 48, 36, 36, 72, 36, 96, 12, 60, 24, 48, 48, 108, 48, 72, 84, 96, 60, 120, 48, 72, 72, 0, 60, 132, 48, 96, 96, 120, 48, 132, 96, 144, 72, 108, 48, 168, 96, 108, 96, 144, 72, 144, 72, 144, 12 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The quadratic form associated with the lattice can be expressed as Q(x, y, z, w) = (2*x+z+w)^2 + (x+2*y)^2 + (x+y)^2 + (y+2*z)^2 + (z+2*w)^2 + w^2 which comes from the basis (2,1,1,0,0,0), (0,2,1,1,0,0), (1,0,0,2,1,0), (1,0,0,0,2,1). - Michael Somos, Mar 30 2015 LINKS John Cannon, Table of n, a(n) for n = 0..5000 G. Nebe and N. J. A. Sloane, Home page for this lattice EXAMPLE G.f. = 1 + 12*x^3 + 12*x^4 + 12*x^6 + 24*x^8 + 12*x^9 + 24*x^10 + 24*x^11 + ... G.f. = 1 + 12*q^6 + 12*q^8 + 12*q^12 + 24*q^16 + 12*q^18 + 24*q^20 + 24*q^22 + 24*q^24 + ... MATHEMATICA a[ n_] := With[{B = QPochhammer[ x^2] QPochhammer[ x^46]}, With[{A = QPochhammer[ x] QPochhammer[ x^23] / B}, SeriesCoefficient[ (4 x^3 + 4 A x^2 + A^3) (4 x^3 + 4 A x^2 + 4 A^2 x + A^3) (B / A)^2, {x, 0, n}]]]; (* Michael Somos, Mar 23 2015 *) PROG (PARI)  {a(n) = my(G); if( n<0, 0, G = [ 6, 3, 2, 2; 3, 6, 2, 0; 2, 2, 6, 3; 2, 0, 3, 6 ]; polcoeff( 1 + 2 * x * Ser( qfrep( G, n, 1)), n))}; /* Michael Somos, Mar 23 2015 */ (PARI) {a(n) = my(A, B); if( n<0, 0, A = x * O(x^n); B = eta(x^2 + A) * eta(x^46 + A); A = eta(x + A) * eta(x^23 + A) / B; polcoeff( (4*x^3 + 4*A*x^2 + A^3) * (4*x^3 + 4*A*x^2 + 4*A^2*x + A^3) * (B / A)^2, n))}; /* Michael Somos, Mar 23 2015 */ (MAGMA) Basis( ModularForms( Gamma0(23), 2), 70)[1]; /* Michael Somos, Mar 23 2015 */ (Sage) A = ModularForms( Gamma0(23), 2, prec=70).basis(); A[2] - 12/11*(A[0] + 3*A[1]); # Michael Somos, Mar 23 2015 CROSSREFS Sequence in context: A195748 A038337 A155825 * A281251 A247511 A097824 Adjacent sequences:  A125506 A125507 A125508 * A125510 A125511 A125512 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 31 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 22:16 EST 2020. Contains 331166 sequences. (Running on oeis4.)