login
Smallest number k such that the numerator of the generalized harmonic number H(k,n) = Sum_{i=1..k} 1/i^n is a prime.
1

%I #27 Jun 12 2023 09:31:37

%S 2,2,3,2,23,73,15,2,3,5,13,57,3,171,5,2,21,7,55,8902,26,1298,115,139,

%T 3,2019,3,4,3,15,56,177

%N Smallest number k such that the numerator of the generalized harmonic number H(k,n) = Sum_{i=1..k} 1/i^n is a prime.

%C a(n) = 2 for n = {1,2,4,8,16,...}. Corresponding Fermat primes A019434.

%C a(n) = 3 for n = {3,9,13,25,27,29,95,107,153,159,...}.

%C a(n) = 5 for n = {10,15,60,90,197,209,...}.

%C a(n) = 7 for n = {18,47,112,155,273,...}.

%C a(n) = 15 for n = {7,30,43,...}.

%C a(21) = 26. a(28) = 4. a(31) = 56. a(144) = 9.

%C From _Alexander Adamchuk_, Apr 18 2010: (Start)

%C a(22)-a(25) = {1298,115,139,3}.

%C a(27)-a(32) = {3,4,3,15,56,177}.

%C a(n) = 3 for all n>2 listed in A125706. (End)

%C a(26) = 2019. - _Alexander Adamchuk_, Apr 26 2010

%C a(20) > 3000. - _Michael S. Branicky_, Jun 25 2022

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a>

%t Do[n = 1; f = 0; While[Not[PrimeQ[Numerator[f]]], f = f + 1/n^x; n++ ]; Print[{x, n - 1}], {x, 1, 25}] (* _Alexander Adamchuk_, Apr 18 2010 *)

%o (PARI) a(n) = my(k=1); while (!ispseudoprime(numerator(sum(i=1, k, 1/i^n))), k++); k; \\ _Michel Marcus_, Jun 04 2022

%o (Python)

%o from sympy import isprime

%o from fractions import Fraction

%o def a(n):

%o Hkn, k = Fraction(1, 1), 1

%o while not isprime(Hkn.numerator):

%o k += 1

%o Hkn += Fraction(1, k**n)

%o return k

%o print([a(n) for n in range(1, 20)]) # _Michael S. Branicky_, Jun 11 2022

%Y Cf. A001008, A007406, A007408, A007410, A099828, A019434, A125706.

%K nonn,hard,more

%O 1,1

%A _Alexander Adamchuk_, Dec 28 2006, Jan 31 2007

%E a(22)-a(25) from _Alexander Adamchuk_, Apr 18 2010

%E a(26)-a(32) from _Alexander Adamchuk_, Apr 26 2010

%E Incorrect a(20) removed by _Michael S. Branicky_, Jun 25 2022

%E a(20) = 8902 from _Michael S. Branicky_, Jun 12 2023