login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125501 The (1,1)-entry in the matrix M^n, where M is the 7 X 7 Cartan matrix [2,-1,0,0,0,0,0; -1,2,-1,0,0,0,0; 0,-1,2,-1,0,0,-1; 0,0,-1,2,-1,0,0; 0,0,0,-1,2,-1,0; 0,0,0,0,-1,2,0; 0,0,-1,0,0,0,2]. 0

%I

%S 1,2,5,14,42,132,430,1444,4981,17594,63442,232828,867145,3269034,

%T 12446307,47767466,184508963,716386598,2793067210,10926148172,

%U 42857189054,168471757292,663434825367,2616336659586,10329939578230

%N The (1,1)-entry in the matrix M^n, where M is the 7 X 7 Cartan matrix [2,-1,0,0,0,0,0; -1,2,-1,0,0,0,0; 0,-1,2,-1,0,0,-1; 0,0,-1,2,-1,0,0; 0,0,0,-1,2,-1,0; 0,0,0,0,-1,2,0; 0,0,-1,0,0,0,2].

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/E7_(mathematics)">E_7 (mathematics)</a>.

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (12,-54,112,-105,36,-1).

%F G.f.: -(2*x-1)*(x^4-12*x^3+19*x^2-8*x+1) / (x^6-36*x^5+105*x^4-112*x^3+54*x^2-12*x+1). - _Colin Barker_, May 25 2013

%e a(6) = 430 = leftmost term in M^6 * [1,0,0,0,0,0,0].

%p with(linalg): M[1]:=matrix(7,7,[2,-1,0,0,0,0,0,-1,2,-1,0,0,0,0,0,-1,2,-1,0,0,-1,0,0,-1,2,-1,0,0,0,0,0,-1,2,-1,0,0,0,0,0,-1,2,0,0,0,-1,0,0,0,2]): for n from 2 to 30 do M[n]:=multiply(M[1],M[n-1]) od:1, seq(M[n][1,1],n=1..30); - _Emeric Deutsch_, Jan 20 2007

%o (PARI) {a(n)=local(E7=[2,-1,0,0,0,0,0; -1,2,-1,0,0,0,0; 0,-1,2,-1,0,0,-1; 0,0,-1,2,-1,0,0; 0,0,0,-1,2,-1,0; 0,0,0,0,-1,2,0; 0,0,-1,0,0,0,2]); (E7^n)[1,1]} - _Paul D. Hanna_, Jan 02 2007

%Y Cf. A126566, A126567, A126569.

%K nonn,easy

%O 0,2

%A _Gary W. Adamson_, Dec 28 2006

%E More terms from _Paul D. Hanna_, Jan 02 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 23:06 EST 2018. Contains 299595 sequences. (Running on oeis4.)