login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125501 The (1,1)-entry in the matrix M^n, where M is the 7 X 7 Cartan matrix [2,-1,0,0,0,0,0; -1,2,-1,0,0,0,0; 0,-1,2,-1,0,0,-1; 0,0,-1,2,-1,0,0; 0,0,0,-1,2,-1,0; 0,0,0,0,-1,2,0; 0,0,-1,0,0,0,2]. 0
1, 2, 5, 14, 42, 132, 430, 1444, 4981, 17594, 63442, 232828, 867145, 3269034, 12446307, 47767466, 184508963, 716386598, 2793067210, 10926148172, 42857189054, 168471757292, 663434825367, 2616336659586, 10329939578230 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..24.

Wikipedia, E_7 (mathematics).

Index entries for linear recurrences with constant coefficients, signature (12,-54,112,-105,36,-1).

FORMULA

G.f.: -(2*x-1)*(x^4-12*x^3+19*x^2-8*x+1) / (x^6-36*x^5+105*x^4-112*x^3+54*x^2-12*x+1). - Colin Barker, May 25 2013

EXAMPLE

a(6) = 430 = leftmost term in M^6 * [1,0,0,0,0,0,0].

MAPLE

with(linalg): M[1]:=matrix(7, 7, [2, -1, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0, -1, 0, 0, -1, 2, -1, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, 0, -1, 2, 0, 0, 0, -1, 0, 0, 0, 2]): for n from 2 to 30 do M[n]:=multiply(M[1], M[n-1]) od:1, seq(M[n][1, 1], n=1..30); - Emeric Deutsch, Jan 20 2007

PROG

(PARI) {a(n)=local(E7=[2, -1, 0, 0, 0, 0, 0; -1, 2, -1, 0, 0, 0, 0; 0, -1, 2, -1, 0, 0, -1; 0, 0, -1, 2, -1, 0, 0; 0, 0, 0, -1, 2, -1, 0; 0, 0, 0, 0, -1, 2, 0; 0, 0, -1, 0, 0, 0, 2]); (E7^n)[1, 1]} - Paul D. Hanna, Jan 02 2007

CROSSREFS

Cf. A126566, A126567, A126569.

Sequence in context: A000108 A057413 A126567 * A126569 A162748 A061815

Adjacent sequences:  A125498 A125499 A125500 * A125502 A125503 A125504

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, Dec 28 2006

EXTENSIONS

More terms from Paul D. Hanna, Jan 02 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 16 23:58 EDT 2018. Contains 313809 sequences. (Running on oeis4.)