login
A125192
Number of 8 X 8 Franklin squares with magic sum 2n.
0
1, 0, 34, 64, 483, 1152, 4228, 9792, 25957, 54848, 120934, 233664, 455751, 816832, 1458184, 2456192, 4100169, 6560960, 10388394, 15928576, 24163115, 35742464, 52332172, 75080960, 106697901, 149112576, 206572782, 282188608, 382414991
OFFSET
0,3
MAPLE
a := proc(n) local s, s6, s3a, s3b ; s :=2*n ; s6 := 23*s^9/627056640+23*s^8/17418240+167*s^7/6531840+5*s^6/15552 ; s3a := 2419*s^5/933120+1013*s^4/77760+701*s^3/22680 ; s3b := 581*s^5/186624+1823*s^4/77760+6127*s^3/45360 ; if s<>2 and s mod 12 = 2 then s6+s3a -359*s^2/10206 -177967*s/816480+241/17496 ; elif s mod 12 = 4 then s6+s3b +10741*s^2/20412 +113443*s/102060+3211/2187 ; elif s mod 12 = 6 then s6+s3a -5*s^2/378 -3967*s/10080-13/8 ; elif s mod 12 = 8 then s6+s3b +11189*s^2/20412 +167203*s/102060+5771/2187 ; elif s mod 12 = 10 then s6+s3a -583*s^2/10206 -608047*s/816480-20239/17496 ; elif s mod 12 = 0 then s6+s3b +431*s^2/756 +1843*s/1260+1 ; else 0 fi ; end: for n from 0 to 30 do printf("%d ", a(n)) ; od;
CROSSREFS
Sequence in context: A303239 A280931 A115159 * A039381 A043204 A043984
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Jan 25 2007
STATUS
approved