login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125181 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n whose ascent lengths form the k-th partition of the integer n; the partitions of n are ordered in the way exemplified by [6], [5,1], [4,2], [4,1,1], [3,3], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1] (the "Mathematica" ordering). Equivalently, T(n,k) is the number of ordered trees with n edges whose node degrees form the k-th partition of the integer n. 8
1, 1, 1, 1, 3, 1, 1, 4, 2, 6, 1, 1, 5, 5, 10, 10, 10, 1, 1, 6, 6, 15, 3, 30, 20, 5, 30, 15, 1, 1, 7, 7, 21, 7, 42, 35, 21, 21, 105, 35, 35, 70, 21, 1, 1, 8, 8, 28, 8, 56, 56, 4, 56, 28, 168, 70, 28, 84, 168, 280, 56, 14, 140, 140, 28, 1, 1, 9, 9, 36, 9, 72, 84, 9, 72, 36, 252, 126, 36 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Row n has A000041(n) terms (=number of partitions of n). Row sums yield the Catalan numbers (A000108).

For relations to Lagrange inversion through shifted reciprocals of a function, refined Narayana numbers, non-crossing partitions, trees, and other lattice paths, see A134264 and A091867. - Tom Copeland, Nov 01 2014

REFERENCES

R. P. Stanley, Enumerative Combinatorics Vol. 2, Cambridge University Press, Cambridge, 1999; Theorem 5.3.10.

LINKS

Alois P. Heinz, Rows n = 1..26, flattened

FORMULA

Given a partition p=[a(1)^e(1), ..., a(j)^e(j)] into k parts (e(1)+...+e(j)=k), the number of Dyck paths whose ascent lengths yield the partition p is n!/[(n-k+1)!e(1)!e(2)! ... e(j)! ]. - Franklin T. Adams-Watters

EXAMPLE

Example: T(5,3)=5 because the 3rd partition of 5 is [3,2] and we have (UU)DD(UUU)DDD, (UUU)DDD(UU)DD, (UU)D(UUU)DDDD, (UUU)D(UU)DDDD and (UUU)DD(UU)DDD; here U=(1,1), D=(1,-1) and the ascents are shown between parentheses.

Triangle starts:

1;

1, 1;

1, 3, 1;

1, 4, 2,  6,  1;

1, 5, 5, 10, 10, 10, 1;

MAPLE

with(combinat): for n from 1 to 9 do p:=partition(n): for q from 1 to numbpart(n) do m:=convert(p[numbpart(n)+1-q], multiset): k:=nops(p[numbpart(n)+1-q]): s[n, q]:=n!/(n-k+1)!/product(m[j][2]!, j=1..nops(m)) od: od: for n from 1 to 9 do seq(s[n, q], q=1..numbpart(n)) od; # yields sequence in triangular form

# second Maple program:

b:= proc(n, i, k) `if`(n=0, [k!], `if`(i<1, [],

      [seq(map(x->x*j!, b(n-i*j, i-1, k-j))[], j=0..n/i)]))

    end:

T:= proc(n) local l, m;

      l:= b(n, n, n+1); m:=nops(l);

      seq(n!/l[m-i], i=0..m-1)

    end:

seq(T(n), n=1..10);  # Alois P. Heinz, May 25 2013

MATHEMATICA

b[n_, i_, k_] := b[n, i, k] = If[n == 0, {k!}, If[i<1, {}, Flatten @ Table[Map[#*j! &, b[n-i*j, i-1, k-j]], {j, 0, n/i}]]]; T[n_] := Module[{l, m}, l = b[n, n, n+1]; m = Length[l]; Table[n!/l[[m-i]], {i, 0, m-1}]]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-Fran├žois Alcover, May 26 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A000041, A000108.

Cf. A134264, A091867.

Sequence in context: A134557 A219842 A134264 * A157076 A049999 A126015

Adjacent sequences:  A125178 A125179 A125180 * A125182 A125183 A125184

KEYWORD

nonn,look,tabf

AUTHOR

Emeric Deutsch, Nov 23 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 08:48 EST 2016. Contains 278698 sequences.