The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125144 Increments in the number of decimal digits of 4^n. 1
 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence is not periodic because log(4)/log(10) is an irrational number. - T. D. Noe, Jan 25 2007 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA a(n)=Number_of_digits{4^(n+1)}-Number_of digits{4^(n)} with n>=0 and where "Number_of digits" is a hypothetical function giving the number of digits of the argument. EXAMPLE a(1)=1 because 4^(1+1)=16 (two digits) 4^1=4 (one digit) and the difference is 1. a(2)=0 because 4^(2+1)=64 (two digits) 4^(2)=16 (two digits) and the difference is 0. MAPLE P:=proc(n) local i, j, k, w, old; k:=4; for i from 1 by 1 to n do j:=k^i; w:=0; while j>0 do w:=w+1; j:=trunc(j/10); od; if i>1 then print(w-old); old:=w; else old:=w; fi; od; end: P(1000); # alternative: H:= [seq(ilog10(4^i), i=1..1001)]: H[2..-1]-H[1..-2]; # Robert Israel, Jul 12 2018 PROG (PARI) a(n) = #digits(4^(n+1)) - #digits(4^n); \\ Michel Marcus, Jul 12 2018 CROSSREFS Cf. A125117, A125122. First differences of A210434. Sequence in context: A128174 A096055 A260456 * A115198 A005614 A341753 Adjacent sequences:  A125141 A125142 A125143 * A125145 A125146 A125147 KEYWORD easy,nonn,base AUTHOR Paolo P. Lava and Giorgio Balzarotti, Jan 11 2007 EXTENSIONS Offset corrected by Robert Israel, Jul 11 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 05:46 EDT 2021. Contains 343121 sequences. (Running on oeis4.)