login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125117 First differences of A034887. 4
0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This sequence is not periodic because log(2)/log(10) is an irrational number. - T. D. Noe, Jan 10 2007

The sequence consists only of 0's and 1's. Sequence A276397 (with a 0 prefixed) is similar but differs from a(42) on. Sequence A144597 differs only from a(102) on. - M. F. Hasler, Oct 07 2016

LINKS

Table of n, a(n) for n=0..105.

FORMULA

a(n) = number_of_digits{2^(n+1)} - number_of_digits{2^(n)} with n>=0.

EXAMPLE

a(1)=0 because 2^(1+1)=4 (one digit) 2^1=2 (one digit) and the difference is 0.

a(3)=1 because 2^(3+1)=16 (two digits) 2^(3)=8 (one digit) and the difference is 1.

MAPLE

P:=proc(n) local i, j, k, w, old; k:=2; for i from 1 by 1 to n do j:=k^i; w:=0; while j>0 do w:=w+1; j:=trunc(j/10); od; if i>1 then print(w-old); old:=w; else old:=w; fi; od; end: P(1000);

PROG

(PARI) a(n)=logint(2^(n+1), 10)-logint(2^n, 10) \\ Charles R Greathouse IV, Oct 19 2016

CROSSREFS

Cf. A034887, A144597, A276397.

Sequence in context: A020987 A072786 A144597 * A144603 A163581 A100283

Adjacent sequences:  A125114 A125115 A125116 * A125118 A125119 A125120

KEYWORD

easy,nonn,base

AUTHOR

Paolo P. Lava and Giorgio Balzarotti, Jan 10 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 14:08 EST 2018. Contains 317239 sequences. (Running on oeis4.)