login
A125080
Triangle, read by rows, defined by T(n,k) = A000108(n-k)*A001147(k)*C(n,2*k), for k=0..[n/2], n>=0, where A000108 is the Catalan numbers and A001147 is the double factorials.
1
1, 1, 2, 1, 5, 6, 14, 30, 6, 42, 140, 75, 132, 630, 630, 75, 429, 2772, 4410, 1470, 1430, 12012, 27720, 17640, 1470, 4862, 51480, 162162, 166320, 39690, 16796, 218790, 900900, 1351350, 623700, 39690, 58786, 923780, 4813380, 9909900, 7432425
OFFSET
0,3
FORMULA
Row sums equals A115081, which is column 0 of triangle A115080.
EXAMPLE
Table begins:
1;
1;
2, 1;
5, 6;
14, 30, 6;
42, 140, 75;
132, 630, 630, 75;
429, 2772, 4410, 1470;
1430, 12012, 27720, 17640, 1470;
4862, 51480, 162162, 166320, 39690;
16796, 218790, 900900, 1351350, 623700, 39690; ...
PROG
(PARI) T(n, k)=binomial(2*n-2*k, n-k)/(n-k+1)*binomial(2*k, k)*k!/2^k*binomial(n, 2*k)
(PARI) T(n, k)=(2*n-2*k)!*n!/k!/(n-k)!/(n-k+1)!/(n-2*k)!/2^k
CROSSREFS
Cf. A115081 (row sums), A115080; A000108, A001147.
Sequence in context: A325279 A095242 A357179 * A349015 A217105 A143892
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Nov 19 2006
STATUS
approved