The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125072 a(n) = number of exponents in the prime-factorization of n which are triangular numbers. 3
 0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 0, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA Additive with a(p^e) = A010054(e). - Antti Karttunen, Jul 08 2017 EXAMPLE The prime-factorization of 360 is 2^3 *3^2 *5^1. There are two exponents in this factorization which are triangular numbers, 1 and 3. So a(360) = 2. MATHEMATICA f[n_] := Length @ Select[Last /@ FactorInteger[n], IntegerQ[Sqrt[8# + 1]] &]; Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *) PROG (PARI) A010054(n) = issquare(8*n + 1); \\ This function from Michael Somos, Apr 27 2000. A125072(n) = vecsum(apply(e -> A010054(e), factorint(n)[, 2])); \\ Antti Karttunen, Jul 08 2017 CROSSREFS Cf. A010054, A125073, A125029, A125070. Sequence in context: A083661 A029369 A255315 * A162642 A139146 A340489 Adjacent sequences:  A125069 A125070 A125071 * A125073 A125074 A125075 KEYWORD nonn AUTHOR Leroy Quet, Nov 18 2006 EXTENSIONS Extended by Ray Chandler, Nov 19 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 15:23 EDT 2021. Contains 343177 sequences. (Running on oeis4.)