%I #11 Jul 01 2022 10:45:56
%S 6,12,30,48,60,72,120,96,144,180,140,240,216,252,360,336,420,224,312,
%T 480,504,540,378,720,600,840,660,672,352,364,756,780,1080,960,1260,
%U 864,594,924,936,1440,1320,1680,1050,1056,1092,1120,1512,1560
%N a(n) is the largest positive integer such that floor(a(n)/d(a(n))) = n, where d(m) is the number of positive divisors of m.
%C We know the sequence is well-defined given the limit x/d(x) > 0.5*sqrt(x) from comments in A036763.
%C Does every positive integer n equal floor(m/d(m)) for some m?
%H Hugo van der Sanden and D. W. Wilson, <a href="/A125056/b125056.txt">Table of n, a(n) for n = 1..10000</a>
%t t = Table[ Floor[ n / DivisorSigma[0, n]], {n, 10^5}]; f[n_] := Max@ Flatten@ Position[t, n]; Array[f, 51] (* _Robert G. Wilson v_, Jan 12 2007 *)
%Y Cf. A126888, A000005, A126889, A078709, A125057.
%K nonn
%O 1,1
%A _Hugo van der Sanden_, Jan 09 2007