login
Odd primes generated recursively: a(1) = 3, a(n) = Min {p is prime; p divides Q+2}, where Q is the product of previous terms in the sequence.
20

%I #22 Feb 11 2024 14:19:19

%S 3,5,17,257,65537,641,7,318811,19,1747,12791,73,90679,67,59,113,13,41,

%T 47,151,131,1301297155768795368671,20921,

%U 1514878040967313829436066877903,5514151389810781513,283,1063,3027041,29,24040758847310589568111822987,154351,89

%N Odd primes generated recursively: a(1) = 3, a(n) = Min {p is prime; p divides Q+2}, where Q is the product of previous terms in the sequence.

%C The first five terms comprise the known Fermat primes: A019434.

%H Sean A. Irvine, <a href="/A125045/b125045.txt">Table of n, a(n) for n = 1..64</a>

%e a(7) = 7 is the smallest prime divisor of 3 * 5 * 17 * 257 * 65537 * 641 + 2 = 2753074036097 = 7 * 11 * 37 * 966329953.

%t a={3}; q=1;

%t For[n=2,n<=20,n++,

%t q=q*Last[a];

%t AppendTo[a,Min[FactorInteger[q+2][[All,1]]]];

%t ];

%t a (* _Robert Price_, Jul 16 2015 *)

%Y Cf. A000945, A019434, A057204-A057208, A051308-A051335, A124984-A124993, A125037-A125045.

%K nonn

%O 1,1

%A _Nick Hobson_, Nov 18 2006