|
|
A125045
|
|
Odd primes generated recursively: a(1) = 3, a(n) = Min {p is prime; p divides Q+2}, where Q is the product of previous terms in the sequence.
|
|
19
|
|
|
3, 5, 17, 257, 65537, 641, 7, 318811, 19, 1747, 12791, 73, 90679, 67, 59, 113, 13, 41, 47, 151, 131, 1301297155768795368671, 20921, 1514878040967313829436066877903, 5514151389810781513, 283, 1063, 3027041
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The first five terms comprise the known Fermat primes: A019434.
|
|
LINKS
|
Sean A. Irvine, Table of n, a(n) for n = 1..64
|
|
EXAMPLE
|
a(7) = 7 is the smallest prime divisor of 3 * 5 * 17 * 257 * 65537 * 641 + 2 = 2753074036097 = 7 * 11 * 37 * 966329953.
|
|
MATHEMATICA
|
a={3}; q=1;
For[n=2, n<=20, n++,
q=q*Last[a];
AppendTo[a, Min[FactorInteger[q+2][[All, 1]]]];
];
a (* Robert Price, Jul 16 2015 *)
|
|
CROSSREFS
|
Cf. A000945, A019434, A057204-A057208, A051308-A051335, A124984-A124993, A125037-A125045.
Sequence in context: A078726 A019434 A164307 * A093179 A067387 A050922
Adjacent sequences: A125042 A125043 A125044 * A125046 A125047 A125048
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Nick Hobson (http://www.qbyte.org/puzzles/), Nov 18 2006
|
|
STATUS
|
approved
|
|
|
|