login
A125041
Primes of the form 24k+17 generated recursively. Initial prime is 17. General term is a(n) = Min {p is prime; p divides (2Q)^4 + 1; p == 17 (mod 24)}, where Q is the product of previous terms in the sequence.
1
17, 1336337, 4261668267710686591310687815697, 41, 904641301321079897900944986453955254215268639579197293450763646548520041534444726724543203327659858344185865089, 3449, 18701609, 8009, 38599161306788868932168755721, 857, 130073, 1433, 113, 809, 18954775793
OFFSET
1,1
COMMENTS
All prime divisors of (2Q)^4 + 1 are congruent to 1 modulo 8.
At least one prime divisor of (2Q)^4 + 1 is congruent to 2 modulo 3 and hence to 17 modulo 24.
The first four terms are the same as those of A125039.
REFERENCES
G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.
LINKS
EXAMPLE
a(3) = 4261668267710686591310687815697 is the smallest prime divisor congruent to 17 mod 24 of (2Q)^4 + 1 = 4261668267710686591310687815697, where Q = 17 * 1336337.
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
EXTENSIONS
More terms from Sean A. Irvine, Jun 09 2015
STATUS
approved