The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125038 Primes of the form 34k+1 generated recursively. Initial prime is 103. General term is a(n)=Min {p is prime; p divides (R^17 - 1)/(R - 1); Mod[p,17]=1}, where Q is the product of previous terms in the sequence and R = 17Q. 1
 103, 307, 9929, 187095201191, 76943, 37061, 137, 5615258941637, 302125531, 18089, 613, 409, 9419, 193189 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All prime divisors of (R^17 - 1)/(R - 1) different from 17 are congruent to 1 modulo 34. REFERENCES M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209. LINKS N. Hobson, Home page (listed in lieu of email address) EXAMPLE a(2) = 307 is the smallest prime divisor congruent to 1 mod 34 of (R^17 - 1)/(R-1) = 7813154903878257490980895975711871949096304270238017 = 307 * 326669135226428664734261 * 77907623430368753779713071, where Q = 103 and R = 17Q. MATHEMATICA a={103}; q=1; For[n=2, n<=5, n++,     q=q*Last[a]; r=17*q;     AppendTo[a, Min[Select[FactorInteger[(r^17-1)/(r-1)][[All, 1]], Mod[#, 34]==1 &]]];     ]; a (* Robert Price, Jul 14 2015 *) CROSSREFS Cf. A000945, A057204-A057208, A051308-A051335, A124984-A125038, A125037-A125045. Sequence in context: A023352 A142476 A136067 * A142531 A142693 A142840 Adjacent sequences:  A125035 A125036 A125037 * A125039 A125040 A125041 KEYWORD more,nonn AUTHOR Nick Hobson, Nov 18 2006 EXTENSIONS a(9)-a(14) from Sean A. Irvine, Jun 27 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 00:32 EDT 2020. Contains 334613 sequences. (Running on oeis4.)