The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125037 Primes of the form 26k+1 generated recursively. Initial prime is 53. General term is a(n) = Min {p is prime; p divides (R^13 - 1)/(R - 1); p == 1 (mod 13)}, where Q is the product of previous terms in the sequence and R = 13*Q. 19
 53, 11462027512399586179504472990060461, 25793, 178907, 131, 5669, 3511, 157, 59021, 13070705295701, 547, 79, 424361132339, 126146525792794964042953901, 5889547, 521, 1301, 6249393047, 9829, 2549, 298378081, 29379481, 56993, 1093, 26729 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All prime divisors of (R^13 - 1)/(R - 1) different from 13 are congruent to 1 modulo 26. REFERENCES M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209. LINKS N. Hobson, Home page (listed in lieu of email address) EXAMPLE a(2) = 11462027512399586179504472990060461 is the smallest prime divisor congruent to 1 mod 26 of (R^13 - 1)/(R - 1) = 11462027512399586179504472990060461, where Q = 53 and R = 13*Q. MATHEMATICA a={53}; q=1; For[n=2, n<=5, n++,     q=q*Last[a]; r=13*q;     AppendTo[a, Min[Select[FactorInteger[(r^13-1)/(r-1)][[All, 1]], Mod[#, 26]==1 &]]];     ]; a (* Robert Price, Jul 16 2015 *) CROSSREFS Cf. A000945, A057204-A057208, A051308-A051335, A124984-A124993, A125037-A125045. Sequence in context: A183793 A145332 A087530 * A101365 A022080 A238935 Adjacent sequences:  A125034 A125035 A125036 * A125038 A125039 A125040 KEYWORD nonn AUTHOR Nick Hobson, Nov 18 2006 EXTENSIONS More terms from Sean A. Irvine, Jun 24 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 19:40 EDT 2020. Contains 334748 sequences. (Running on oeis4.)