login
A125030
a(n) = sum of exponents in the prime factorization of n that are noncomposite.
4
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 0, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 1, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 4, 1, 2, 3, 0, 2, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 2, 3, 1, 1, 0, 2, 1, 4, 2, 2, 2, 4, 1, 4, 2, 3, 2, 2, 2, 6, 1, 3, 3, 4, 1, 3, 1, 4, 3
OFFSET
1,4
FORMULA
From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = e if e is composite, and 0 otherwise.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = - P(2) + Sum_{p prime} p * (P(p) - P(p+1)) = 0.52262278983683613884..., where P(s) is the prime zeta function. (End)
EXAMPLE
a(720) = 3, since the prime factorization of 720 is 2^4 * 3^2 * 5^1 and two of the exponents in this factorization are noncomposites (the exponents 2 and 1, whose sum is 3).
MATHEMATICA
f[n_] := Plus @@ Select[Last /@ FactorInteger[n], # == 1 || PrimeQ[ # ] &]; Table[f[n], {n, 110}] (* Ray Chandler, Nov 19 2006 *)
PROG
(PARI) A125030(n) = vecsum(apply(e -> if((1==e)||isprime(e), e, 0), factorint(n)[, 2])); \\ Antti Karttunen, Jul 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Nov 16 2006
EXTENSIONS
Extended by Ray Chandler, Nov 19 2006
STATUS
approved