login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A124932 Triangle read by rows: T(n,k) = k*(k+1)*binomial(n,k)/2 (1 <= k <= n). 2
1, 2, 3, 3, 9, 6, 4, 18, 24, 10, 5, 30, 60, 50, 15, 6, 45, 120, 150, 90, 21, 7, 63, 210, 350, 315, 147, 28, 8, 84, 336, 700, 840, 588, 224, 36, 9, 108, 504, 1260, 1890, 1764, 1008, 324, 45, 10, 135, 720, 2100, 3780, 4410, 3360, 1620, 450, 55 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Row sums = A001793: (1, 5, 18, 56, 160, 432, ...).

Triangle is P*M, where P is the Pascal triangle as an infinite lower triangular matrix and M is an infinite bidiagonal matrix with (1,3,6,10,...) in the main diagonal and in the subdiagonal.

This number triangle can be used as a control sequence when listing combinations of subsets as in Pascals triangle by assigning a number to each element that corresponds to the n:th subset that the element belongs to. One then gets number blocks whose sums are the terms in this number triangle. - Mats Granvik, Jan 14 2009

LINKS

G. C. Greubel, Rows n = 1..100 of triangle, flattened

FORMULA

T(n,k) = binomial(k+1,2)*binomial(n,k). - G. C. Greubel, Nov 19 2019

EXAMPLE

First few rows of the triangle:

1;

2, 3;

3, 9, 6;

4, 18, 24, 10;

5, 30, 60, 50, 15;

6, 45, 120, 150, 90, 21;

7, 63, 210, 350, 315, 147, 28;

...

From Mats Granvik, Dec 18 2009: (Start)

The numbers in this triangle are sums of the following recursive number blocks:

1................................

.................................

11.....12........................

.................................

111....112....123................

.......122.......................

.................................

1111...1112...1123...1234........

.......1122...1223...............

.......1222...1233...............

.................................

11111..11112..11123..11234..12345

.......11122..11223..12234.......

.......11222..12223..12334.......

.......12222..11233..12344.......

..............12233..............

..............12333..............

.................................

(End)

MAPLE

T:=(n, k)->k*(k+1)*binomial(n, k)/2: for n from 1 to 12 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form

MATHEMATICA

Table[Binomial[k + 1, 2]*Binomial[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)

PROG

(PARI) T(n, k) = binomial(k+1, 2)*binomial(n, k); \\ G. C. Greubel, Nov 19 2019

(Magma) B:=Binomial; [B(k+1, 2)*B(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 19 2019

(Sage) b=binomial; [[b(k+1, 2)*b(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Nov 19 2019

(GAP) B:=Binomial;; Flat(List([1..12], n-> List([1..n], k-> B(k+1, 2)* B(n, k) ))); # G. C. Greubel, Nov 19 2019

CROSSREFS

Cf. A001793.

Sequence in context: A124931 A210226 A209163 * A248788 A340914 A194232

Adjacent sequences: A124929 A124930 A124931 * A124933 A124934 A124935

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson, Nov 12 2006

EXTENSIONS

Edited by N. J. A. Sloane, Nov 24 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 15:01 EST 2022. Contains 358667 sequences. (Running on oeis4.)